首页> 外文OA文献 >Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method
【2h】

Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method

机译:多尺度方法包括微纤维尺度以评估弹性   基于神经网络计算和maTLaB的皮质骨常数   均匀化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The complexity and heterogeneity of bone tissue require a multiscalemodelling to understand its mechanical behaviour and its remodellingmechanisms. In this paper, a novel multiscale hierarchical approach includingmicrofibril scale based on hybrid neural network computation and homogenisationequations was developed to link nanoscopic and macroscopic scales to estimatethe elastic properties of human cortical bone. The multiscale model is dividedinto three main phases: (i) in step 0, the elastic constants of collagen-waterand mineral-water composites are calculated by averaging the upper and lowerHill bounds; (ii) in step 1, the elastic properties of the collagen microfibrilare computed using a trained neural network simulation. Finite element (FE)calculation is performed at nanoscopic levels to provide a database to train anin-house neural network program; (iii) in steps 2 to 10 from fibril tocontinuum cortical bone tissue, homogenisation equations are used to performthe computation at the higher scales. The neural network outputs (elasticproperties of the microfibril) are used as inputs for the homogenisationcomputation to determine the properties of mineralised collagen fibril. Themechanical and geometrical properties of bone constituents (mineral, collagenand cross-links) as well as the porosity were taken in consideration. Thispaper aims to predict analytically the effective elastic constants of corticalbone by modelling its elastic response at these different scales, ranging fromthe nanostructural to mesostructural levels. Our findings of the lowest scale'soutput were well integrated with the other higher levels and serve as inputsfor the next higher scale modelling. Good agreement was obtained between ourpredicted results and literature data.
机译:骨骼组织的复杂性和异质性要求进行多尺度建模,以了解其机械行为及其重构机制。本文提出了一种新颖的多尺度分层方法,该方法包括基于混合神经网络计算和均质化方程的微纤维尺度,以将纳米尺度和宏观尺度联系起来,以估计人体皮质骨的弹性。多尺度模型分为三个主要阶段:(i)在步骤0中,通过平均上下界的平均值来计算胶原蛋白-水和矿物质-水复合物的弹性常数; (ii)在步骤1中,使用训练的神经网络模拟来计算胶原微纤维的弹性性质。在纳米级进行有限元(FE)计算,以提供训练内部神经网络程序的数据库; (iii)在从原纤维到连续性皮层骨组织的第2步到第10步中,均质化方程用于更高级别的计算。神经网络输出(微原纤维的弹性特性)用作均质化计算的输入,以确定矿化的胶原原纤维的特性。考虑了骨骼成分(矿物,胶原蛋白和交联)的机械和几何特性以及孔隙率。本文旨在通过模拟在从纳米结构到中观结构水平的这些不同尺度下的弹性响应,来分析预测皮质骨的有效弹性常数。我们对最低规模产出的发现与其他较高层次的产出很好地结合在一起,可以作为下一个更高规模建模的投入。我们的预测结果与文献数据之间取得了良好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号